This study proposes a novel fuzzy disturbance observer (FDO)-augmented adaptive nonsingular terminal sliding mode control (NTSMC) framework for multi-joint robotic manipulators, addressing critical challenges in trajectory tracking precision and disturbance rejection. Unlike conventional disturbance observers requiring prior knowledge of disturbance bounds, the proposed FDO leverages fuzzy logic principles to dynamically estimate composite disturbances—including unmodeled dynamics, parameter perturbations, and external torque variations—without restrictive assumptions about disturbance derivatives. The control architecture achieves rapid finite-time convergence by integrating the FDO with a singularity-free terminal sliding manifold and an adaptive exponential reaching law while significantly suppressing chattering effects. Rigorous Lyapunov stability analysis confirms the uniform ultimate boundedness of tracking errors and disturbance estimation residuals. Comparative simulations on a 2-DOF robotic arm demonstrate a 97.28% reduction in root mean square tracking errors compared to PD-based alternatives and a 73.73% improvement over a nonlinear disturbance observer-enhanced NTSMC. Experimental validation on a physical three-joint manipulator platform reveals that the proposed method reduces torque oscillations by 58% under step-type disturbances while maintaining sub-millimeter tracking accuracy. The framework eliminates reliance on exact system models, offering a generalized solution for industrial manipulators operating under complex dynamic uncertainties.
Loading....